Abstract
Exposure of tryptophan hydroxylase (TPH), the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, to dopamine under mild oxidizing conditions (iron + H2O2) or in the presence of tyrosinase results in a concentration-dependent inactivation of the enzyme. Dopamine, iron, H2O2, or tyrosinase alone does not alter TPH activity. Similarly, N-acetyldopamine oxidized with one equivalent of sodium periodate causes a concentration-dependent inactivation of TPH as well. TPH is protected from dopamine-induced inactivation by reduced glutathione, ascorbic acid, and dithiothreitol but not by the radical scavengers DMSO, mannitol, or superoxide dismutase. Parallel studies with [3H]dopamine reveal a high negative correlation between inhibition of catalysis and incorporation of tritium into the enzyme. Those reducing agents and antioxidants that protect TPH from inactivation are effective in preventing the labeling of TPH by [3H]dopamine. Acid hydrolysis and HPLC with electrochemical detection (HPLC-EC) analysis of inactivated TPH revealed the formation of cysteinyl-dopamine residues within the enzyme. Exposure of dopamine-modified TPH to redox-cycling staining after SDS-PAGE confirmed the formation of a quinoprotein. These results indicate that dopamine-quinones covalently modify cysteinyl residues in TPH, leading directly to the loss of catalytic activity, and establish that TPH could be a target for dopamine-quinones in vivo after drugs (e.g., neurotoxic amphetamines) that cause dopamine-dependent inactivation of TPH. Redox cycling of a TPH-quinoprotein could also participate in the serotonin neuronal toxicity caused by these same drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.