Abstract
Dopamine is formed froml-tyrosine by tyrosine hydroxylase and aromaticl-amino acid decarboxylase. In addition to this pathway, however, the formation of catecholamines, including dopamine, from trace amines such as tyramine by hepatic microsomes has been demonstrated. In this study, we investigated the formation of dopamine from trace amines, using human hepatic microsomes and human cytochrome P450 (CYP) isoforms expressed in yeast. Among the 11 isoforms of human CYP expressed in yeast, CYP2D6 was the only isoform exhibiting strong ability to convertp-tyramine andm-tyramine to dopamine. In studies with human hepatic microsomes, the hydroxylation of tyramine to dopamine was inhibited by bufuralol, a typical substrate for CYP2D isoforms, and anti-CYP2D1 antiserum. This is the first report showing that CYP2D is capable of converting tyramine to dopamine. The Km values of CYP2D6, expressed in yeast, forp-tyramine andm-tyramine were 190.1 ± 19.5 μM and 58.2 ± 13.8 μM, respectively. Tyramine is an endogenous compound which exists in the brain as a trace amine but is also an exogenous compound which is found in foods such as cheese and wine. Our results suggest that dopamine is formed from endogenous and/or exogenous tyramine by this CYP2D isoform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.