Abstract

Two-week infusion of muscle-derived differentiation factor (MDF), or human recombinant acidic fibroblast growth factor (aFGF) and/or its muscle-derived activating substance into the striatum of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats caused a significant and long lasting (40 days) reduction (48–100%) in amphetamine-induced rotational asymmetry. In parallel with behavioural recovery, striatal tyrosine hydroxylase (TH) activity, dopamine (DA) and dihydroxy-phenyl-acetic acid (DOPAC) levels recovered in a dose-dependent manner in all treated rats when compared to controls. The greatest increments were observed in rats infused with aFGF and its activator. Increases in biochemical indices were not reflected in trophic changes of the dopamine system; thus, the number of TH-immunoreactive neurones and their striatal innervation were unmodified by treatment with MDF. In contrast with the lesioned brain, infusion of these agents into the intact brain produced no change in nigrostriatal dopamine biochemistry. Our results suggest that dopamine differentiation factors may be important in regulating the production of dopamine in the injured brain and, therefore, may be useful in the treatment of DA imbalances associated with certain neurological disorders such as Parkinson's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.