Abstract
Aggregation of α-synuclein is known to be a causal factor in the genesis of Parkinson’s disease and Dementia with Lewy bodies. Duplication and/or triplication and mutation of the α-synuclein gene are associated with sporadic and familial Parkinson’s disease. Synucleinopathies appear to primarily affect dopaminergic neurons. The present studies investigate the role of dopamine in α-synuclein aggregation through NMR. Dopamine causes aggregation of both wild type and A53T mutant α-synuclein in a temperature-dependent manner, but the mutant A53T shows a greater propensity to aggregate in the presence of dopamine only at 37 °C. A single point mutation in the α-synuclein A53T mutant gene results in a structural change in the protein and drastically increases its propensity to aggregate in the presence of dopamine. The present data indicate that mutation in the α-synuclein gene may predispose the protein to dopamine-induced aggregation, thereby contributing to disease pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.