Abstract

Appropriate communication is at the heart of successful, healthy social interactions in humans. Deficits in social communication are a hallmark of several neurological and psychiatric disorders. Yet, very little research has been devoted to understanding the mechanisms underlying these issues. It has been suggested that dopamine is a candidate neurotransmitter system involved in stimulating communication in individuals that are not highly motivated to communicate. A typical model to study dopaminergic dysfunctions in humans is represented by Parkinson's disease (PD) patients, who show motor, cognitive and motivational symptoms. Our study aimed to investigate the effects of social communication on actions in non-demented PD patients receiving dopamine replacement therapy (Levodopa = l-Dopa) and in neurologically healthy control participants. Patients' ability to modulate motor patterning depending on the communicative intention motivating the action to be performed was evaluated both in “on” (with l-Dopa) and “off” (without l-Dopa) states. In two main conditions, participants were requested to reach towards, grasp an object, and either simply lift it (individual condition) or lift it with the intent to communicate a meaning to a partner (communicative condition). Movements' kinematics was recorded using a three-dimensional motion analysis system. The results indicate that kinematics is sensitive to communicative intention and that l-Dopa treatment has positive effects on translating communicative intentions into specific motor patterns in PD patients. Although the to-be-grasped object remained the same both the controls and the PD patients in an ‘on’ state adopted different kinematic patterning for the ‘individual’ and the ‘communication’ conditions. The PD patients in the ‘off’ state, instead, were unable to kinematically differentiate between the two conditions. We contend that social and communicative impairments are associated with abnormalities in dopaminergic pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.