Abstract
Although dopamine supersensitivity is a fundamental aspect of diseases such as schizophrenia and Parkinson's disease, the molecular basis of dopamine supersensitivity is not known. Because behavioral dopamine supersensitivity is associated with a marked elevation of striatal dopamine D2(High) receptors in vitro, it is important to develop methods to measure D2(High) receptors in vivo. The present ex vivo study found that the dopamine agonist NPA ([-]-N-propyl-norapomorphine) inhibited the binding of the agonist [(3)H](+)PHNO to rat striatal D2 receptors significantly more than the D2 antagonist [(3)H]raclopride, when NPA was coinjected i.v. with each radioligand. These results suggest that the greater sensitivity of [(3)H](+)PHNO to inhibition by the coinjected NPA reflects in vivo competition at D2(High) receptors. Using rats that had been sensitized to amphetamine, this ex vivo method found that the specific binding of [(3)H](+)PHNO that was displaced by 10 microg/kg of NPA was 2.4-fold higher than that for control rats. These data agree with in vitro data showing a marked increase in D2(High) sites after amphetamine sensitization. Therefore, it is recommended that this method of co-injecting the D2 radioligand and the dopamine agonist displacer be used in human positron tomography to detect D2(High) receptors in health and disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.