Abstract

Although dopamine supersensitivity is a fundamental aspect of diseases such as schizophrenia and Parkinson's disease, the molecular basis of dopamine supersensitivity is not known. Because behavioral dopamine supersensitivity is associated with a marked elevation of striatal dopamine D2(High) receptors in vitro, it is important to develop methods to measure D2(High) receptors in vivo. The present ex vivo study found that the dopamine agonist NPA ([-]-N-propyl-norapomorphine) inhibited the binding of the agonist [(3)H](+)PHNO to rat striatal D2 receptors significantly more than the D2 antagonist [(3)H]raclopride, when NPA was coinjected i.v. with each radioligand. These results suggest that the greater sensitivity of [(3)H](+)PHNO to inhibition by the coinjected NPA reflects in vivo competition at D2(High) receptors. Using rats that had been sensitized to amphetamine, this ex vivo method found that the specific binding of [(3)H](+)PHNO that was displaced by 10 microg/kg of NPA was 2.4-fold higher than that for control rats. These data agree with in vitro data showing a marked increase in D2(High) sites after amphetamine sensitization. Therefore, it is recommended that this method of co-injecting the D2 radioligand and the dopamine agonist displacer be used in human positron tomography to detect D2(High) receptors in health and disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call