Abstract

This study was conducted to determine the expression of dopamine D(2)-like receptors in opossum kidney (OK) cells and to examine the potential role of these receptors in mitogenesis. First, the presence of D(2)-like receptor binding sites in OK cell membranes was demonstrated by radioligand binding, using [(3)H]spiperone. The D(2)-like receptor subtypes expressed in OK cells were subsequently demonstrated, by Western blotting, to be D(2), D(3), and D(4) receptors. OK cells were stimulated with bromocriptine, (+/-)-2-(N-phenylethyl-N-propyl)amino-5-hydroxytetralin hydrochloride, (R)-(+)-2-dipropylamino-7-hydroxy-1,2,3,4-tetrahydronaphthalene hydrobromide, or PD 168,077 maleate (D(2)-like, D(2), D(3), and D(4) receptor agonists, respectively), and mitogenesis was measured as a function of [(3)H]thymidine incorporation. It was observed that, whereas bromocriptine and (+/-)-2-(N-phenylethyl-N-propyl)amino-5-hydroxytetralin hydrochloride produced increases in [(3)H]thymidine incorporation, (R)-(+)-2-dipropylamino-7-hydroxy-1,2,3,4-tetrahydronaphthalene hydrobromide and PD 168,077 maleate did not produce such an effect, indicating the involvement of D(2) receptors in the mitogenic response. Pertussis toxin and PD 98059 blocked the mitogenesis caused by bromocriptine, suggesting a role for G(i) or G(o) proteins and p44/42 mitogen-activated protein kinase (MAPK), respectively. Furthermore, it was observed that bromocriptine produced a time-dependent increase in the phosphorylation (activation) of p44/42 MAPK, which was blocked by domperidone, pertussis toxin, or PD 98059. Therefore, this study demonstrates that, although OK cells express D(2), D(3), and D(4) receptors, activation of only D(2) receptors causes mitogenesis via phosphorylation of p44/42 MAPK. Furthermore, the cellular mechanisms contributing to D(2) receptor-mediated phosphorylation of p44/42 MAPK seem to involve the tyrosine kinase, phosphatidylinositol-3-kinase, and protein kinase C pathways. It is likely that bromocriptine and other preferential D(2) receptor agonists might provide protection against ischemic reperfusion injury in renal proximal tubular cells, by increasing the survival rates for ischemic cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.