Abstract

Dopamine receptor activation is thought to contribute adversely to several neuropathological disorders, including Parkinson's disease and schizophrenia. In addition, dopamine may have a neuroprotective role: dopamine receptor agonists are reported to protect nerve cells by virtue of their antioxidant properties as well as by receptor-mediated mechanisms. White matter injury can also be a significant factor in neurological disorders. Using real-time RT-PCR, we show that differentiated rat cortical oligodendrocytes express dopamine D2 receptor and D3 receptor mRNA. Oligodendrocytes were vulnerable to oxidative glutamate toxicity and to oxygen/glucose deprivation injury. Agonists for dopamine D2 and D3 receptors provided significant protection of oligodendrocytes against these two forms of injury, and the protective effect was diminished by D2 and D3 antagonists. Levels of oligodendrocyte D2 receptor and D3 receptor protein, as measured by Western blotting, appeared to increase following combined oxygen and glucose deprivation. Our results suggest that dopamine D2 and D3 receptor activation may play an important role in oligodendrocyte protection against oxidative glutamate toxicity and oxygen-glucose deprivation injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.