Abstract

Dopamine (DA) signaling in the basal ganglia plays important roles in motor control. Motor deficiencies were previously reported in dopamine receptor D1 (D1R) and D2 (D2R) knockout mice. While these results indicate the involvement of DA receptors in motor execution, the null knockout (KO) mouse lacks the specificity necessary to determine when and where in the brain D1R and D2R function in motor execution. To address these questions, we restricted the loss of function temporally and spatially by using D1R conditional knockdown (cKD) mice and mice injected with antagonists against DA receptors directly into the dorsal striatum. In addition, we address the DA and acetylcholine (ACh) balance hypothesis by using antagonists against ACh receptors. We tested the motor ability of the mice with a newly devised task named the accelerating step-wheel. In this task, the maximum running speed was measured in a situation where the wheel rotation speed was gradually accelerated in one trial. We found significant decreases in the maximum running speed of D1R cKD mice and the mice injected with the antagonist against D1R or muscarinic ACh receptor. These results indicated that D1R and muscarinic ACh receptor in the dorsal striatum play pivotal roles in the execution of walking/running.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.