Abstract

The ability of dopamine D(4) and D(2) receptors to activate extracellular signal-regulated kinases (ERKs) 1 and 2 was compared using Chinese hamster ovary (CHO-K1) cells transfected with D(4.2), D(4.4), D(4.7), and D(2L) receptors. Dopamine stimulation of D(4) or D(2L) receptors produced a transient, dose-dependent increase in ERK1/2 activity. Receptor-specific activation of the ERK mitogen-activated protein kinase (MAPK) pathway was confirmed using the D(2)-like receptor-selective agonist quinpirole, whereas the specific antagonist haloperidol blocked activation. MAPK stimulation was dependent on a pertussis-toxin-sensitive G protein (G(i/o)). trans-Activation of the platelet-derived growth factor (PDGF) receptor was an essential step in D(4) and D(2L) receptor-induced MAPK activation. PDGF receptor-selective tyrosine kinase inhibitors tyrphostin A9 and AG1295 abolished or significantly inhibited ERK1/2 activation by D(4) and D(2L) receptors. Dopamine stimulation of the D(4) receptor also produced a rapid increase in tyrosine phosphorylation of the PDGF receptor-beta. The Src-family tyrosine kinase inhibitor PP2 blocked MAPK activation by dopamine; however, this drug was also found to inhibit PDGF-BB-stimulated ERK activity and autophosphorylation of the PDGF receptor-beta. Downstream signaling pathways support the involvement of a receptor tyrosine kinase. The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, protein kinase C inhibitors GF109203X and Calphostin C, dominant-negative RasN17, and the MEK inhibitor PD98059 significantly attenuated or abolished activation of MAPK by dopamine D(4) and D(2L) receptors. Our results indicate that D(4) and D(2L) receptors activate the ERK kinase cascade by first mobilizing signaling by the PDGF receptor, followed by the subsequent activation of ERK1/2 by pathways associated with this receptor tyrosine kinase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.