Abstract

Stability is the main challenge for the application of PtCo catalysts because Co tends to leach during the electrochemical reaction. Herein, we immerse and adsorb dopamine to densely coat Pt0.8Co0.2 particles and subsequently thermally carbonize the coating into few-layer nitrogen-doped graphene to produce Pt0.8Co0.2@NC. This coating effectively hinders direct contact between Pt0.8Co0.2 particles and the electrolyte, thereby enhancing the stability of the catalyst by preventing Ostwald ripening and suppressing competitive adsorption of toxic species, while also bolstering its antipoisoning ability. Experimental results indicate that the thin coating does not compromise the oxygen reduction reaction activity of the catalyst, showcasing a half-wave potential of 0.81 V in alkaline electrolytes. Spectroscopic results suggest that a strong bonding interaction between Pt and the pyridinic N of N-doped graphene contributes to the generation of a dense coating. The coating layer does not affect the four-electron reaction mechanism of the Pt0.8Co0.2 alloy, and the coordinatively unsaturated carbon atoms on Pt0.8Co0.2@NC serve as active oxygen reduction reaction centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.