Abstract

There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.

Highlights

  • Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry.The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes

  • In a contemporary review of the behavioral functions of DA systems (Salamone, 1987), it was noted that DA in nucleus accumbens could be involved in the “exertion of effort”, and it was suggested that future experiments could “offer animals choices between various reinforcers that are associated with operants of varying difficulty” (p. 602) so that researchers could determine if the allocation of behavioral resources could be biased toward or away from more or less effortful responses by administration of dopaminergic drugs

  • Disconnection studies have revealed that serial connections between basolateral amygdala, anterior cingulate cortex, nucleus accumbens, and ventral pallidum are involved in the exertion of effort and effort-related choice behavior (Floresco and Ghods-Sharifi, 2007; Farrar et al, 2008; Mingote et al, 2008; Hauber and Sommer, 2009)

Read more

Summary

BEHAVIORAL NEUROSCIENCE

There are numerous problems with the hypothesis that brain dopamine (DA) systems, in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry.The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders

LIMITATIONS
Fixed Ratio Requirement
No reversal
Findings
NUCLEUS ACCUMBENS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call