Abstract

Biogenic amines are widely characterized in pathways evaluating reward and punishment, resulting in appropriate aversive or appetitive responses of vertebrates and invertebrates. We utilized the honey bee model and a newly developed spatial avoidance conditioning assay to probe effects of biogenic amines octopamine (OA) and dopamine (DA) on avoidance learning. In this new protocol non-harnessed bees associate a spatial color cue with mild electric shock punishment. After a number of experiences with color and shock the bees no longer enter the compartment associated with punishment. Intrinsic aspects of avoidance conditioning are associated with natural behavior of bees such as punishment (lack of food, explosive pollination mechanisms, danger of predation, heat, etc.) and their association to floral traits or other spatial cues during foraging. The results show that DA reduces the punishment received whereas octopamine OA increases the punishment received. These effects are dose-dependent and specific to the acquisition phase of training. The effects during acquisition are specific as shown in experiments using the antagonists Pimozide and Mianserin for DA and OA receptors, respectively. This study demonstrates the integrative role of biogenic amines in aversive learning in the honey bee as modeled in a novel non-appetitive avoidance learning assay.

Highlights

  • Throughout the past century the honey bee has been used as a model organism for neuroethological and behavioral studies including behavioral physiology, communication, navigation, social organization, learning, and memory [1,2,3]

  • Avoidance conditioning Time spent by bees on either half of the apparatus was not influenced by color in the absence of electric shock or when electric shock was uniformly applied to both sides of the grid

  • When shock was presented on only one side of the apparatus, bees learned over time not to enter the section with the color cue

Read more

Summary

Introduction

Throughout the past century the honey bee has been used as a model organism for neuroethological and behavioral studies including behavioral physiology, communication, navigation, social organization, learning, and memory [1,2,3]. We combined concepts from the Kolmes [9] sting response (SR) assay with the Vergoz et al [2] SER or sting extension reflex conditioning assay to test avoidance conditioning of individual walking honey bees. We used an aversive stimulus that does not elicit sting extension (6 V, 50 mA electric current applied to half of a Kolmes electric grid). This way we were able to test multiple individuals without interference due to alarm pheromone and venom release that would accompany stimuli leading to sting extension. Bees in individual lanes walked across a grid and associated a colored location with electric shock punishment

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.