Abstract

Symmetrically and unsymmetrically electron-donor-substituted octacyano[4]dendralenes were synthesized and their opto-electronic properties investigated by UV/vis spectroscopy, electrochemical measurements (cyclic voltammetry (CV) and rotating disk voltammetry (RDV)), and electron paramagnetic resonance (EPR) spectroscopy. These nonplanar push-pull chromophores are potent electron acceptors, featuring potentials for first reversible electron uptake around at -0.1 V (vs Fc(+)/Fc, in CH2Cl2 + 0.1 M n-Bu4NPF6) and, in one case, a remarkably small HOMO-LUMO gap (ΔE = 0.68 V). EPR measurements gave well-resolved spectra after one-electron reduction of the octacyano[4]dendralenes, whereas the one-electron oxidized species could not be detected in all cases. Investigations of the radical anions of related donor-substituted 1,1,4,4-tetracyanobuta-1,3-diene derivatives revealed electron localization at one 1,1-dicyanovinyl (DCV) moiety, in contrast to predictions by density functional theory (DFT) calculations. The particular factors leading to the charge distribution in the electron-accepting domains of the tetracyano and octacyano chromophores are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.