Abstract

Normal immune responses stimulated by pathogenic and environmental antigens generate memory T cells that react with donor antigens and no currently used immunosuppressive drug completely inhibits memory T-cell function. While donor-reactive memory T cells clearly compromise graft outcomes, mechanisms utilized by memory T cells to promote rejection are largely unknown. In this study, we investigated how early endogenous memory cells infiltrate and express effector function in cardiac allografts. Endogenous CD8 memory T cells in nonsensitized recipients distinguish syngeneic versus allogeneic cardiac allografts within 24 h of reperfusion. CD8-dependent production of IFN-gamma and CXCL9/Mig was observed 24 to 72 h posttransplant in allografts but not isografts. CXCL9 was produced by donor cells in response to IFN-gamma made by recipient CD8 T cells reactive to donor class I major histocompatibility complex (MHC) molecules. Activated CD8 T cells were detected in allografts at least 3 days before donor-specific effector T cells producing IFN-gamma were detected in the recipient spleen. Early inflammation mediated by donor-reactive CD8 memory T cells greatly enhanced primed effector T-cell infiltration into allografts. These results suggest that strategies for optimal inhibition of alloimmunity should include neutralization of infiltrating CD8 memory T cells within a very narrow window after transplantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call