Abstract

Background: The anterior half of the peroneus longus tendon (AHPLT) has been reported to be an effective autograft for ligament reconstruction with respect to strength and safety. However, there is little information regarding donor site morbidity after harvesting the AHPLT. Furthermore, to the best of our knowledge, there has not been a study on the isokinetic evaluation of ankle plantar flexion and eversion after AHPLT harvesting. Purpose: To evaluate the clinical and radiographic results after lateral ankle ligament reconstruction using the AHPLT. We further investigated whether harvesting the AHPLT for lateral ankle ligament reconstruction decreases the strength of ankle plantar flexion and eversion. Study Design: Case series; Level of evidence, 4. Methods: Thirty consecutive patients (31 cases) were treated by anatomic lateral ligament reconstruction using the AHPLT. For the clinical assessment, visual analog scale (VAS), American Orthopaedic Foot and Ankle Society (AOFAS), and Karlsson-Peterson scores were evaluated preoperatively and at the last follow-up. For the radiographic assessment, talar tilt angle and anterior talar displacement were measured preoperatively and at the last follow-up. The peak isokinetic torques for ankle plantar flexion at angular velocities of 30 and 120 deg/s and eversion at angular velocities of 30 and 60 deg/s were measured at a minimum of 1 year after surgery. Results: The mean VAS score improved significantly from 6.4 ± 1.7 preoperatively to 1.6 ± 1.5 at the last follow-up (P < .001). The mean respective AOFAS and Karlsson-Peterson scores improved significantly from 57.2 ± 12.8 and 66.9 ± 13.6 preoperatively to 89.0 ± 10.0 and 93.3 ± 5.7 at the last follow-up (P < .001). The mean talar tilt angle improved significantly from 15.3° ± 6.2° preoperatively to 3.4° ± 3.0° at the last follow-up (P < .001), and the mean anterior talar displacement improved significantly from 10.2 ± 3.3 mm preoperatively to 6.3 ± 1.9 mm at the last follow-up (P < .001). No significant differences were observed between the uninvolved and involved legs in the mean peak torque for plantar flexion at angular speeds of 30 deg/s (P = .517) and 120 deg/s (P = .347) or for eversion at angular speeds of 30 deg/s (P = .913) and 60 deg/s (P = .983). Conclusion: Anatomic lateral ligament reconstruction using the AHPLT showed good clinical and radiographic results without a significant decrease in the peroneus longus strength. Lateral ligament reconstruction using the AHPLT may be a good surgical option for the treatment of chronic ankle instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.