Abstract

BackgroundAllogeneic hematopoietic cell transplantation (HCT) can be curative for many hematologic diseases. However, complications such as graft-versus-host disease (GVHD) and relapse of primary malignancy remain significant and are the leading causes of morbidity and mortality. Effects of killer Ig-like receptors (KIR)-influenced NK cells on HCT outcomes have been extensively pursued over the last decade. However, the relevance of the reported algorithms on HLA matched myeloablative HCT with rabbit antithymocyte globulin (ATG) is used for GVHD prophylaxis remains elusive. Here we examined the role of KIR and KIR-ligands of donor-recipient pairs in modifying the outcomes of ATG conditioned HLA matched sibling and unrelated donor HCTMethods and FindingsThe study cohort consisted of 281 HLA matched sibling and unrelated donor-recipient pairs of first allogeneic marrow or blood stem cell transplantation allocated into ‘discovery’ (135 pairs) and ‘validation’ (146 pairs) cohorts. High resolution HLA typing was obtained from the medical charts and KIR gene repertoires were obtained by a Luminex® based SSO method. All surviving patients were followed-up for a minimum of two years. KIR and HLA class I distributions of HCT pairs were stratified as per applicable definitions and were tested for their association with cause specific outcomes [acute GVHD grade II-IV (aGVHD), chronic GVHD needing systemic therapy (cGVHD) and relapse] using a multivariate competing risks regression model as well as with survival outcomes [relapse-free survival (RFS), cGVHD & relapse free survival (cGRFS) and overall survival (OS)] by multivariate Cox proportional hazards regression model. A significant association between KIR genotype mismatching (KIR-B/x donor into KIR-AA recipient or vice versa) and cGVHD was found in both discovery (p = 0.001; SHR = 2.78; 95%CI: 1.50–5.17) and validation cohorts (p = 0.005; SHR = 2.61; 95%CI: 1.33–5.11). High incidence of cGVHD associated with KIR genotype mismatching was applicable to both sibling and unrelated donors and was specific to recipients who had one or two C1 bearing HLA-C epitopes (HLA-C1/x, p = 0.001; SHR = 2.40; 95%CI: 1.42–4.06). When compared with KIR genotype mismatched transplants, HLA-C1/x patients receiving grafts from KIR genotype matched donors had a significantly improved cGRFS (p = 0.013; HR = 1.62; 95%CI: 1.11–2.39). Although there was no effect of KIR genotype matching on survival outcomes, a significantly reduced incidence of relapse (p = 0.001; SHR = 0.22; 95%CI: 0.10–0.54) and improved relapse-free survival (p = 0.038; HR = 0.40; 95%CI: 0.17–0.95) was observed with one or more missing ligands for donor inhibitory KIR among the recipients of unrelated donor transplants.ConclusionsThe present study for the first time presents the beneficial effects of KIR genotype matching in reducing cGVHD in myeloablative transplant setting using HLA matched (sibling and unrelated) donors. The findings offer a clinically applicable donor selection strategy that can help control cGVHD without affecting the risk of relapse and/or identify patients at a high risk of developing cGVHD as potential candidates for preemptive therapy. The findings also affirm the beneficial effect of one or more missing inhibitory KIR ligands in the recipient in reducing relapse and improving a relapse free survival in unrelated donor transplants.

Highlights

  • Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy for hematologic malignancies, leukemia, as well as for life-threatening congenital and acquired disorders of hematolymphopoiesis [1]

  • The present study for the first time presents the beneficial effects of killer Ig-like receptors (KIR) genotype matching in reducing chronic GVHD (cGVHD) in myeloablative transplant setting using HLA matched donors

  • KIR genotype mismatching showed a strong correlation with the incidence of cGVHD but not with acute GVHD grade II-IV (aGVHD) or relapse. (i) Chronic graft-versus-host disease (GVHD)

Read more

Summary

Introduction

Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy for hematologic malignancies, leukemia, as well as for life-threatening congenital and acquired disorders of hematolymphopoiesis [1]. In spite of routinely using ATG in addition to high resolution HLA matching, ~40% adult peripheral blood stem cell recipients in our experience develop clinically significant GVHD. Majority of these patients fail to achieve a sustained complete response to immunosuppressive drugs and either die or experience poor quality of life due to chronic GVHD (cGVHD). Allogeneic hematopoietic cell transplantation (HCT) can be curative for many hematologic diseases Complications such as graft-versus-host disease (GVHD) and relapse of primary malignancy remain significant and are the leading causes of morbidity and mortality.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call