Abstract
The optical absorption and the optical rectification coefficients associated to hydrogenic impurity interstate transitions in zincblende GaN-based nanostructures of the quantum wire type are investigated. The system is assumed to have cylindrical shape and the influence of external tuning probes such as hydrostatic pressure and static electric fields is particularly taken into account. The electron states are obtained within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement. The nonlinear optical coefficients are calculated using a nonperturbative solution of the density-matrix Bloch equation. Our results show that the resonance-related features of the optical response become shifted in the frequency range of the incident radiation due to the effect of the hydrostatic pressure, the strength of the applied field and the change in the impurity center position.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.