Abstract

Low levels of so-called “donor-doping” in titanate-based perovskite oxides such as La for Ba, Sr, and Nb for Ti in (Ba, Sr)TiO3 can significantly reduce the resistivity of these typical (d0) dielectric materials and expand application areas to positive temperature coefficient resistors, thermoelectrics, conductive wafers as thin film substrates, and solid oxide fuel cell anode materials. Here, we show low levels of Nb-doping (≤1 at. %) on the Ti-site in the well-known lead-free piezoelectric perovskite oxide Na0.5Bi0.5TiO3 (NBT) produces completely different behaviours whereby much higher resistivity is obtained, therefore indicating a different donor-doping (substitution) mechanism. There is a switch in conduction mechanism from oxygen-ions in undoped NBT with an activation energy (Ea) of <0.9 eV to electronic (band gap) conduction in 0.5–1 at. % Nb-doped NBT with Ea ∼ 1.5–1.8 eV. This demonstrates the necessity of further systematic doping studies to elucidate the defect chemistry of NBT which is clearly different to that of (Ba,Sr)TiO3. This defect chemistry needs to be understood if NBT-based materials are going to be manufactured on a large scale for commercial applications. This study also illustrates different donor-doping mechanisms to exist within the family of d0 titanate-based perovskites.

Highlights

  • Sr)TiO3 can significantly reduce the resistivity of these typical (d0

  • There is a switch in conduction mechanism from oxygen-ions

  • This defect chemistry needs to be understood if NBT-based materials are going to be manufactured on a large scale

Read more

Summary

Introduction

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.