Abstract

We use ab initio molecular dynamics to study proton transfer in a donor-bridge-acceptor system in which the bridge is a single water molecule and the entire system is embedded in aqueous solution. The results, based on a large number of proton transfer trajectories, demonstrate that the dominant charge-transfer pathway is a subpicosecond "through bridge" event in which the bridge adopts an Eigen-like (hydronium) structure. We also identify another state in which the bridge forms a Zundel-like configuration with the acceptor that appears to be a dead end for the charge transfer. The reaction coordinate is inherently multidimensional and, as we demonstrate, cannot be given in terms of either local structural parameters of the donor-bridge-acceptor system or local solvent coordination numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.