Abstract

A comparative analysis of inflammation between solid organs following donor brain death (BD) is still lacking and the detailed influence of BD accelerating ischaemia-reperfusion injury (IRI) post-transplantation remains to be addressed. Applying a murine model of BD, we demonstrated that 4 h after BD organs were characterized by distinct inflammatory expression patterns. For instance, lipocalin 2 (LCN2), a marker of acute kidney injury, was selectively induced in BD livers but not in kidneys. BD further resulted in significantly reduced frequencies of CD3(+) CD4(+) , CD3(+) CD8(+) T cells and NKp46(+) NK cells in the liver, whereas BD kidneys and hearts were characterized by significantly lower frequencies of conventional dendritic cells (cDCs). Syngeneic models of kidney (KTx) and heart transplantation (HTx) illustrated stronger gene expression in engrafted BD hearts only, but 20 h post-transplantation both organs displayed comparable intragraft lymphocyte frequencies, except for NK cells and graft function. Moreover, the complement factor C3d deposit detected in small vessels and capillaries in cardiac syngrafts did not significantly differ between BD and sham-transplanted groups. Finally, no further influence of donor BD on graft survival was detected in an allogeneic heart transplantation setting (C57BL/6 grafts into BALB/c recipients). We show for the first time that BD organs are characterized by a varying inflammatory profile; however, BD does not accelerate IRI in syngeneic KTx and HTx.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.