Abstract

Within the framework of the effective-mass approximation and variational approach, we present calculations of the bound exciton binding energy, due to an ionized donor, in wurtzite In x Ga 1− x N/GaN strained quantum dots (QDs), considering three-dimensional confinement of the electron and hole in the QDs and the strong built-in electric field induced by the spontaneous and piezoelectric polarizations. Our results show that the position of the ionized donor, the strong built-in electric field, and the structural parameters of the QDs have a strong influence on the donor binding energy. The variation of this energy versus position of the donor ion is in double figures of milli-electron volt. Realistic cases, including the donor in the QD and in the surrounding barriers, are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.