Abstract

Singlet oxygen (1O2) is a thrilling active species for selectively oxidating organic substances. However, the efficient and selective generation of 1O2 maintains a great challenge. Here, we develop a donor-acceptor structured g-C3N4 by covalently engineering benzenetricarboxaldehyde (BTA) onto the fringe of g-C3N4. The g-C3N4-BTA exerts high-efficiency 1O2 generation with nearly 100% selectivity via peroxymonosulfate (PMS) photocatalytic activation upon visible light illumination, exhibiting obviously boosted efficiency for selective elimination of atrazine (ATZ). The consequences of experiments and theoretical calculations demonstrate that BTA units serve as electron-withdrawing sites to trap photogenerated electrons and facilitate the adsorption of PMS on the electron-deficient heptazine rings of g-C3N4. As such, PMS can be in-situ oxidated by the photogenerated holes to selectively produce 1O2. Besides, the g-C3N4-BTA/PMS system delivers high stability and strong resistance to the coexisting organic ions and natural organic matter, demonstrating great potential for selectively removing targeted organic contaminants with high efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.