Abstract

The molecular structure of polymer electrets is crucial for creating diverse functionalities of organic field-effect transistor (OFET) devices. Herein, a conceptual framework has been applied in this study to design the highly photoresponsive carbazole-based copolymer electret materials for the application of photoresponsive OFET memory. As an electret layer, two 1,8-carbazole-based copolymers were utilized; the copoly(CT) consisted of carbazole as the donor group and thiophene as the π-spacer, whereas the copoly(CBT) was further introduced as an acceptor moiety, benzothiadiazole, for comparison. Both copolymers exhibited efficient visible-light absorption and photoluminescence quenching in the film state, indicating the formation of a considerable number of nonemissive excitons, one of the crucial factors for achieving photoinduced recovery behavior in OFET memories. Compared to copoly(CT) with the pure donor system, faster and more effective photoinduced recovery behavior was discovered in the copoly(CBT) with the conjugated donor-acceptor structure because of the coexistence of the conjugated donor and acceptor groups. Thus, the dissociation of the generated excitons facilitated the stimulating of the unique ambipolar trapping property, resulting in the high-density data storage devices with multilevel current states. In addition, the nonvolatile and durable characteristics demonstrated the feasibility in application of memory and photorecorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call