Abstract

The use of low-intensity NIR light to operate molecular switches offers several potential advantages including enhanced penetration into bulk materials, in particular biological tissues, and reduced radiation damage due to the limited photon energies. The latter, however, pose a challenge for designing reasonably bistable systems. We have developed a general design strategy for direct one-photon NIR photoswitches based on negative photochromic dihydropyrenes carrying opposing strong donor-acceptor substituents either along the long axis of the molecule or across it. Thus, two series of 2,7- and 4,9-disubstituted dihydropyrenes were synthesized, and their photothermal properties investigated as a function of the type, strength, and position of the attached donor and acceptor substituents as well as the polarity of the environment. By shifting the excitation wavelength deep into the NIR, both NIR one-photon absorption cross-section and photoisomerization efficiency could be maximized while retaining a reasonable thermal stability of the metastable cyclophanediene isomer. Thus, the lowest optical transition was shifted beyond 900 nm, the NIR cross-section was enhanced by two orders of magnitude, and the thermal half-lives vary between milliseconds and hours. These unique features open up ample opportunities for noninvasive, optically addressable materials and material systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call