Abstract

Molecular structures of [PCl2N]3‐MCl3 adducts, M=B, Al, Ga, In, Tl, have been studied employing HF, B3LYP*, B3LYP , PW91, BLYP, OLYP, BP and LDA methods using DZP basis set (as defined in Amsterdam Density Functional, ADF, package). Some aspects of adduct formation like considering the difference between Front and Back dihedral angles and also ring puckering showed that the [PCl2N]3‐AlCl3 is the most stable adduct comparing the others. Based on the comparison between the X‐ray and theoretical geometrical parameters of [NPCl2]3(AlCl3) and [NPCl2]3(GaCl3), the LDA method and BP, PW91 and OLYP functionals combined with DZP basis set were found to yield the most satisfactory agreement. Results showed that with surprise, the LDA(DZP) method has the maximum matching with experimental data, comparing the others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.