Abstract
We propose an explicit formula connecting Donaldson invariants and Seiberg–Witten invariants of a 4-manifold of simple type via Nekrasov's deformed partition function for the N = 2 SUSY gauge theory with a single fundamental matter. This formula is derived from Mochizuki's formula, which makes sense and was proved when the 4-manifold is complex projective. Assuming our formula is true for a 4-manifold of simple type, we prove Witten's conjecture and sum rules for Seiberg–Witten invariants (superconformal simple type condition), conjectured by Mariño, Moore and Peradze.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Publications of the Research Institute for Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.