Abstract
Although building a 360-degree comprehensive view of a customer has been a long-standing goal in marketing, this challenge has not been successfully addressed in many marketing applications because fractured customer data stored across different “silos” are hard to integrate under “one roof” for several reasons. Instead of integrating customer data, in this article we propose to integrate several domain-specific partial customer views into one consolidated or composite customer profile using a Deep Learning-based method that is theoretically grounded in Kolmogorov’s Mapping Neural Network Existence Theorem. Furthermore, our method needs to securely access domain-specific or siloed customer data only once for building the initial customer embeddings. We conduct extensive studies on two industrial applications to demonstrate that our method effectively reconstructs stable composite customer embeddings that constitute strong approximations of the ground-truth composite embeddings obtained from integrating the siloed raw customer data. Moreover, we show that these data-security preserving reconstructed composite embeddings not only perform as well as the original ground-truth embeddings but significantly outperform partial embeddings and state-of-the-art baselines in recommendation and consumer preference prediction tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Management Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.