Abstract
Considered is a 2d cellular automaton with moving agents in a multi-agent system. The objective is to find agents controlled by a finite-state program (FSP) that can form domino patterns. The quality of a formed pattern is measured by the degree of order computed by counting matching $$3 \times 3$$ templates. An agent reacts on its own color, the color in front and whether it is blocked or not. It can change the color, move or not and turn into any direction. Four FSPs were evolved with k agents ($$1 \le k \le 4$$) initially placed in the corners of the field. For a $$12 \times 12$$ training field, the aimed pattern could be formed with a 100% degree of order. The performance was also high with other field sizes. Livelocks are avoided by using three different variants of the evolved FSP. The degree of order usually fluctuates after reaching a certain threshold, but it can also be stable, and the agents may show the termination by running in a cycle or by stopping their activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.