Abstract

A variable threshold voltage keeper circuit technique is proposed for simultaneous power reduction and speed enhancement of domino logic circuits. The threshold voltage of a keeper transistor is dynamically modified during circuit operation to reduce contention current without sacrificing noise immunity. The variable threshold voltage keeper circuit technique enhances circuit evaluation speed by up to 60% while reducing power dissipation by 35% as compared to a standard domino (SD) logic circuit. The keeper size can be increased with the proposed technique while preserving the same delay or power characteristics as compared to a SD circuit. The proposed domino logic circuit technique offers 14% higher noise immunity as compared to a SD circuit with the same evaluation delay characteristics. Forward body biasing the keeper transistor is also proposed for improved noise immunity as compared to a SD circuit with the same keeper size. It is shown that by applying forward and reverse body biased keeper circuit techniques, the noise immunity and evaluation speed of domino logic circuits are simultaneously enhanced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.