Abstract

We investigate the parameterized complexity of generalisations and variations of the dominating set problem on classes of graphs that are nowhere dense. In particular, we show that the distance-$d$ dominating-set problem, also known as the $(k,d)$-centres problem, is fixed-parameter tractable on any class that is nowhere dense and closed under induced subgraphs. This generalises known results about the dominating set problem on $H$-minor free classes, classes with locally excluded minors and classes of graphs of bounded expansion. A key feature of our proof is that it is based simply on the fact that these graph classes are uniformly quasi-wide, and does not rely on a structural decomposition. Our result also establishes that the distance-$d$ dominating-set problem is FPT on classes of bounded expansion, answering a question of Ne{\v s}et{\v r}il and Ossona de Mendez.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.