Abstract

Aggregation processes are fundamental in any discipline where the fusion of information is of vital interest. For aggregating binary fuzzy relations such as equivalence relations or fuzzy orderings, the question arises which aggregation operators preserve specific properties of the underlying relations, e.g. T-transitivity. It will be shown that preservation of T-transitivity is closely related to the domination of the applied aggregation operator over the corresponding t-norm T. Furthermore, basic properties for dominating aggregation operators, not only in the case of dominating some t-norm T, but dominating some arbitrary aggregation operator, will be presented. Domination of isomorphic t-norms and ordinal sums of t-norms will be treated. Special attention is paid to the four basic t-norms (minimum t-norm, product t-norm, Łukasiewicz t-norm, and the drastic product).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.