Abstract
The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well-known vertex covering and dominating set problems in graphs. We consider the graph theoretical representation of this problem as a variation of the dominating set problem and define a set S to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S (following a set of rules for power system monitoring). The minimum cardinality of a power dominating set of a graph G is the power domination number $\gamma_P(G)$. We show that the power dominating set (PDS) problem is NP-complete even when restricted to bipartite graphs or chordal graphs. On the other hand, we give a linear algorithm to solve the PDS for trees. In addition, we investigate theoretical properties of $\gamma_P(T)$ in trees T.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.