Abstract
Let R be a commutative ring with identity and A(R) be the set of ideals with non-zero annihilator. The annihilating-ideal graph of R is defined as the graph AG(R) with the vertex set A(R)⁎=A(R)\\{0} and two distinct vertices I and J are adjacent if and only if IJ=0. In this paper, we study the domination number of AG(R) and some connections between the domination numbers of annihilating-ideal graphs and zero-divisor graphs are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.