Abstract
A set of vertices D is a dominating set for a graph if every vertex is either in D or adjacent to a vertex which is in D. We show that the problem of finding a minimum dominating set in a chordal graph is NP-complete, even when restricted to undirected path graphs, but exhibit a linear time greedy algorithm for the problem further restricted to directed path graphs. Streamlined to handle only trees, our algorithm becomes the algorithm of Cockayne, Goodman and Hedetniemi. An interesting parallel with graph isomorphism is pointed out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.