Abstract

The contribution of entropy change due to stretching of polymer chains in promoting crystal nucleation is theoretically derived for strain-induced crystallization of natural rubber. The results of theoretical calculation are compared with experimental results obtained by fast time-resolved wide-angle X-ray diffraction. Usual values of surface free energies corresponding to chain-folded nuclei lead to theoretical results far from experimental measurements. Because the discrepancy comes from the large activation energy of nucleation even after the stretching of polymer chains, additional contribution of reduced surface free energies due to the formation of bundle-like nuclei was taken into account. This treatment allows to faithfully reproduce experimental results and then to conclude that nuclei formed in natural rubber during stretching are of bundle-like type. Moreover, it reveals that surface energies have a greater effect on the decrease of critical free energy than the change in entropy due to deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call