Abstract

Group representations by bounded Lamperti operators in the spaces Lα(1≤α<∞) form a wide class of representations, including representations by bounded positive operators and (when α≠2) representations by isometric operators. The Dominated and the Pointwise Ergodic Theorems (DET and PET) for Cesàro averages for the bounded Lamperti representations of amenable σ-compact locally compact groups in Lα(1<α<∞) were proved by A. Tempelman in Proc. Amer. Math. Soc. 143 (2015) 4989–5004. By using a completely different, functional-analytical method, developed by A. Shulman in his PhD thesis in 1988, we generalize this result to “weighted” averages of such representations and discuss various conditions on the “weights” under which the DET and the PET hold. We conclude with applications of the general results to the bounded Lamperti representations of groups of polynomial growth and of the groups Rm and Zm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.