Abstract

Eight dominant X-chromosome nondisjunction mutants have been identified and characterized. Hermaphrodites (XX) heterozygous for any one of the mutations produce 20-35% male (XO) self-progeny compared with the wild-type frequency of 0.2%. Seven of the eight mutants carry X-autosome translocations. Three of these, represented by mnT2, involve linkage group (LG) II and show severe crossover suppression for X-linked markers. The two half-translocations comprising mnT2 are separable and of very unequal size. The smaller one includes the left tip of X and the right end of LGII and can exist as a free duplication, being present in addition to the normal chromosome complement, in either hermaphrodites or males; it has no effect on X nondisjunction. The reciprocal half-translocation of mnT2 includes the bulk of both LGII and X chromosomes; it disjoins regularly from a normal LGII and confers the property of X-chromosome nondisjunction. A fourth translocation, mnT10(V;X), is also reciprocal and consists of half-translocations that recombine with V and X, respectively. Either half-translocation of mnT10 can exist in heterozygous form in the absence of the other to give heterozygous duplication-deficiency animals; the property of X-chromosome nondisjunction is conferred, in homozygotes as well as heterozygotes, solely by one of the half-translocations, which is deficient for the left tip of the X. The final three translocations have X breakpoints near the right end of X and autosomal breakpoints near the right end of LGIV, the left end of LGV and the right end of LGI, respectively. All three are homozygous inviable. Males hemizygous for the X portion of any of the seven translocations are viable and fertile. The final mutant, mn164, maps as a point at or near the left tip of the X and causes X-chromosome nondisjunction in both heterozygotes and homozygotes. In heterozygotes, mn164 promotes equational nondisjunction of itself but not its wild-type allele. The mutants are discussed in light of the holocentric nature of the C. elegans chromosomes. It is proposed that the left end of the X chromosome plays a critical structural role in the segregation of X chromosomes during meiosis in XX animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.