Abstract

The search for realistic one-dimensional (1D) models that exhibit dominant superconducting (SC) fluctuations effects has a long history. In these 1D systems, the effects of commensurate band fillings--strongest at half-filling--and electronic repulsions typically lead to a finite charge gap and the favoring of insulating density wave ordering over superconductivity. Accordingly, recent proposals suggesting a gapless metallic state in the Holstein-Hubbard (HH) model, possibly superconducting, have generated considerable interest and controversy, with the most recent work demonstrating that the putative dominant superconducting state likely does not exist. In this paper we study a model with non-local electron-phonon interactions, in addition to electron-electron interactions, this model unambiguously possesses dominant superconducting fluctuations at half filling in a large region of parameter space. Using both the numerical multi-scale functional renormalization group for the full model and an analytic conventional renormalization group for a bosonized version of the model, we demonstrate the existence of dominant superconducting (SC) fluctuations. These dominant SC fluctuations arise because the spin-charge coupling at high energy is weakened by the non-local electron-phonon interaction and the charge gap is destroyed by the resultant suppression of the Umklapp process. The existence of the dominant SC pairing instability in this half-filled 1D system suggests that non-local boson-mediated interactions may be important in the superconductivity observed in the organic superconductors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call