Abstract

Penicillium spp. has been genetically manipulated and gene function studies have utilized single gene deletion strains for phenotypic analysis. Fungal transformation experiments have relied on hygromycin and hygromycin phosphotransferase (hph) as the main dominant selectable marker (DSM) system in Penicillium spp. This poses a limitation on the number of loci that can be analyzed and complemented in reverse genetic studies. Additionally, many economically important Penicillium spp. have not been evaluated to determine the utility of additional chemicals that can serve as DSMs. Therefore, six compounds were examined for 15 blue mold strains and their Minimum Inhibitory Concentrations (MICs) determined. Phleomycin, neomycin and G418 were deemed ineffective, as Penicillium spp. growth was observed on media amended with 1000 μg/ml of each compound. The efficacy of bialophos to inhibit fungal growth was intermediate, with MICs ranging from 250 to 1000 μg/ml and was species-dependent. However, chlorimuron ethyl and benlate had the lowest MIC values and minimal variation in efficacy within and between species. Therefore, benlate and chlorimuron ethyl are good candidates for use as since corresponding fungal resistance genes have been cloned, characterized and are available from a variety of public and academic sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.