Abstract

The rise in cytosolic free Ca2+ concentration ([Ca2+]i) is the major trigger for secretion of ACTH from pituitary corticotropes. To better understand the shaping of the Ca2+ signal in corticotropes, we investigated the mechanisms regulating the depolarization-triggered Ca2+ signal using patch-clamp techniques and indo-1 fluorometry. The rate of cytosolic Ca2+ clearance was unaffected by inhibitors of Na+/Ca2+ exchanger or plasma membrane Ca2+-ATPase (PMCA), slightly slowed by sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor, but dramatically slowed by mitochondrial uncouplers or inhibitor of mitochondrial uniporter. Measurements with rhod-2 revealed that depolarization-triggered increase in mitochondrial Ca2+ concentration. Thus, mitochondria have a dominant role in cytosolic Ca2+ clearance. Using the Mn2+ quench technique, we found the presence of a continuous basal Ca2+ influx in corticotropes. This basal Ca2+ influx was balanced by the combined actions of mitochondrial uniporter and PMCA and SERCA pumps. Inhibition of the mitochondrial uniporter or PMCA or SERCA pumps elevated basal [Ca2+]i. Using membrane capacitance measurement, we found that the change in the shape of the depolarization-triggered Ca2+ signal after mitochondrial inhibition was associated with enhancement of the exocytotic response. Thus, mitochondria have a dominant role in the regulation of Ca2+ signal and exocytosis in corticotropes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call