Abstract

High harmonic generation (HHG) is a typical high-order nonlinear optical phenomenon and can be used to probe electronic structures of solids. Here, we investigate the temperature dependence of HHG from Pr0.6Ca0.4MnO3 in the range of 7–294 K, including the charge ordering (CO) transition and magnetic transition temperatures. The high harmonic (HH) intensity remains almost constant in the high-temperature charge-disordered phase. However, as the temperature is lowered, it starts to increase near the CO transition temperature where an optical gap related to the CO appears. The anomalous gap energy dependence resembles the one recently reported in a Mott insulator. We attribute the suppression of the HH intensity at high temperatures to the destructive interference among HH emissions from thermally activated multiple charge configurations. Our results suggest that HHG is a promising tool for probing the fluctuation of local order in strongly correlated systems. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.