Abstract

AbstractLytic bone disease in myeloma is characterized by an increase in multinucleate osteoclasts in close proximity to tumor cells. However, the nature of osteoclast precursors and the mechanisms underlying multinuclearity are less understood. Here we show that culture of myeloma cell lines as well as primary myeloma cells with human dendritic cells (DCs) but not monocytes or macrophages leads to spontaneous cell-cell fusion, which then leads to the facile formation of multinucleate bone-resorbing giant cells. Osteoclastogenesis is cell contact dependent, leading to up-regulation of thrombospondin-1 (TSP-1) in DCs. Disruption of CD47–TSP-1 interaction by TSP-1–blocking antibodies or down-regulation of CD47 on tumor cells by RNA interference abrogates tumor-induced osteoclast formation. Blockade of CD47–TSP-1 interactions also inhibits receptor activator for nuclear factor κB ligand- and macrophage colony-stimulating factor–induced formation of osteoclasts from human monocytes. Further, TSP-1 blockade attenuates hypercalcemia induced by parathyroid hormone in vivo. These data point to a role for CD47–TSP-1 interactions in regulating cell-fusion events involved in human osteoclast formation. They also suggest that DCs, known to be enriched in myeloma tumors, may be direct precursors for tumor-associated osteoclasts. Disruption of CD47–TSP-1 interactions or preventing the recruitment of DCs to tumors may provide novel approaches to therapy of myeloma bone disease and osteoporosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call