Abstract
Acute transitions in cytosolic calcium ([Ca2+]i) through store-operated calcium entry channels catalyze interendothelial cell gap formation that increases permeability. However, the rise in [Ca2+]i only disrupts barrier function in the absence of a rise in cAMP. Discovery that type 6 adenylyl cyclase (AC6; EC 4.6.6.1) is inhibited by calcium entry through store-operated calcium entry pathways provided a plausible explanation for how inflammatory [Ca2+]i mediators may decrease cAMP necessary for endothelial cell gap formation. [Ca2+]i mediators only modestly decrease global cAMP concentrations and thus, to date, the physiological role of AC6 is unresolved. Present studies used an adenoviral construct that expresses the calcium-stimulated AC8 to convert normal calcium inhibition into stimulation of cAMP, within physiologically relevant concentration ranges. Thrombin stimulated a dose-dependent [Ca2+]i rise in both pulmonary artery (PAECs) and microvascular (PMVEC) endothelial cells, and promoted intercellular gap formation in both cell types. In PAECs, gap formation was progressive over 2 h, whereas in PMVECs, gap formation was rapid (within 10 min) and gaps resealed within 2 h. Expression of AC8 resulted in a modest calcium stimulation of cAMP, which virtually abolished thrombin-induced gap formation in PMVECs. Findings provide the first direct evidence that calcium inhibition of AC6 is essential for endothelial gap formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.