Abstract

Pathogenic variants occurring in protein-coding regions underlie human genetic disease through various mechanisms. They can lead to a loss of function (LOF) such as in recessive conditions or in dominant conditions due to haploinsufficiency. Dominant-negative (DN) effects, counteracting the activity of the normal gene-product, and gain of function (GOF) are also mechanisms driving dominance. Here, I discuss a few papers on these specific mechanisms. In short, there is accumulating evidence pointing to differences between LOF versus non-LOF variants (DN and GOF). The latter are thought to have milder effects on protein structure and, as expected, DN variants are enriched at protein interfaces. This tendency to cluster in 3D space can help improve the ability of computational tools to predict the pathogenicity of DN variants, which is currently a challenging issue. More recent results support the hypothesis whereby cotranslational assembly of macromolecular complexes can buffer deleterious consequences of variants that would otherwise lead to DN effects (DNEs). Indeed, subunits the variants of which are responsible for DNEs tend to elude cotranslational assembly, thus poisoning complexes involving wild-type subunits. The constraints explaining why the buffering of DNEs is not universal require further investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.