Abstract
Disorders of L-type Ca2+ channels can cause severe cardiac arrhythmias. A subclass of small GTP-binding proteins, the RGK family, regulates L-type Ca2+ current (I(Ca,L)) in heterologous expression systems. Among these proteins, Rad (Ras associated with diabetes) is highly expressed in the heart, although its role in the heart remains unknown. Here we show that overexpression of dominant negative mutant Rad (S105N) led to an increase in I(Ca,L) and action potential prolongation via upregulation of L-type Ca2+ channel expression in the plasma membrane of guinea pig ventricular cardiomyocytes. To verify the in vivo physiological role of Rad in the heart, a mouse model of cardiac-specific Rad suppression was created by overexpressing S105N Rad, using the alpha-myosin heavy chain promoter. Microelectrode studies revealed that action potential duration was significantly prolonged with visible identification of a small plateau phase in S105N Rad transgenic mice, when compared with wild-type littermate mice. Telemetric electrocardiograms on unrestrained mice revealed that S105N Rad transgenic mice had significant QT prolongation and diverse arrhythmias such as sinus node dysfunction, atrioventricular block, and ventricular extrasystoles, whereas no arrhythmias were observed in wild-type mice. Furthermore, administration of epinephrine induced frequent ventricular extrasystoles and ventricular tachycardia in S105N Rad transgenic mice. This study provides novel evidence that the suppression of Rad activity in the heart can induce ventricular tachycardia, suggesting that the Rad-associated signaling pathway may play a role in arrhythmogenesis in diverse cardiac diseases.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.