Abstract

AbstractAbstract 25We have previously cloned a number of fusion genes involving PAX5 in acute lymphoblastic leukemia (ALL) (Kawamata N. et al. PNAS, 2008). All of these fusion products exerted a dominant negative effect over the wild-type PAX5. One of these fusion PAX5 proteins, PAX5-C20orf112, was generated by the fusion between the DNA binding domain of PAX5 (PAX5DB) and the C-terminal end of C20orf112. To find the mechanism of the dominant negative effect of the PAX5-C20 fusion, we performed Fluorescence Recovery After Photobleaching (FRAP) assay using PAX5-C20 and PAX5wt constructs connected with Yellow Fluorescence Proteins (YFP). Results showed extremely strong DNA binding affinity of PAX5-C20 compared to PAX5wt. FRAP experiments using deletion mutants of PAX5-C20 showed that both the DNA binding domain and C-terminal alpha-helix region of C20 were indispensable for this strong binding to DNA. Fluorescence Resonance Energy Transfer (FRET) assay, Bi-molecule Fluorescence Complementation (BiFC) assay, and co-immunoprecipitation assay showed that C-terminal end of C20 containing an alpha-helix region encodes a homo-multimerization domain. To confirm that homo-multimerization of PAX5DB increases DNA binding affinity, PAX5DB was fused to the inducible dimerization motif of FKBP (PAX5DB-FK). PAX5DB-FK increased its DNA binding affinity with addition of FKBP ligand inducing homo-dimerization. We also fused PAX5DB to homo-dimerization of MAX (bHLH domain), or tetramerization domain of TP53. FRAP assays showed that homo-dimerization increased its DNA binding activity, and homo-tetramerization further increased its DNA binding and its dominant negative effect over PAX5wt. PAX5-ETV6, also a common fusion protein in ALL, exerts a dominant negative effect over PAX5wt. The ETV6 region of this fusion protein has a multimerization (SAM) domain and the PAX5DB-ETV6SAM mutant protein also showed a dominant negative effect and strong binding to DNA. Importantly, in further studies, co-expression of PAX5-C20 and the YFP-C20-alpha-helix-region diminished the strong DNA binding and the dominant negative activity of the fusion protein. Our data show that multimerization of the DNA binding domain of PAX5 induces strong DNA binding activity, leading to its dominant negative effect over the wild type transcription factor. We believe this represents a new paradigm explaining how a number of fusion genes containing a DB motif from one protein and a multimerization motif from the other partner, can behave in a dominant negative fashion. These observations suggest that peptides/ small molecules inhibiting the multimerization of these oncogenic fusion transcription factors can be promising reagents for treating cancers. Disclosures:No relevant conflicts of interest to declare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.