Abstract

We recently showed that adenoviral transfer and expression of the Lps(d)/Ran gene isolated from endotoxin-resistant C3H/HeJ mice could protect endotoxin-sensitive mice from endotoxic shock. Elevation of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-alpha), is thought to be essential for the development of septic shock. To investigate the extent to which Lps(d)/Ran affects TNF-alpha production, we transduced primary macrophages from endotoxin-sensitive and -resistant mice with adenoviral vectors expressing the wild-type and the mutant Lps/Ran cDNAs and other control genes, and compared the amount of TNF-alpha produced by these various transduced macrophages. Successful transfer and expression of Lps(d)/Ran cDNA in endotoxin-sensitive C3H/HeOuJ macrophages reduced TNF-alpha production upon lipopolysaccharide (LPS) stimulation, as compared with macrophages transduced with vectors expressing the wild-type Lps(n)/Ran cDNA, the green fluorescent protein gene, or the lacZ gene. On the other hand, successful transfer and expression of the wild-type Lps(n)/Ran cDNA in primary macrophages from endotoxin-resistant C3H/HeJ mice failed to induce TNF-alpha production to any significant extent unless a very high LPS concentration was used. Given our previous demonstration that Lps(n)/Ran functions effectively in restoring LPS responsiveness in B cells from C3H/HeJ mice, we conclude that Lps/Ran is involved in a CD14-independent signal transduction pathway. This dominant negative down-regulation by Lps(d)/Ran on TNF-alpha production by macrophages and probably other innate immune responses may be key to the development of an effective gene therapy for endotoxic or septic shock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.