Abstract

The multicopper oxidase ceruloplasmin plays a key role in iron homeostasis, and its ferroxidase activity is required to stabilize cell surface ferroportin, the only known mammalian iron exporter. Missense mutations causing the rare autosomal neurodegenerative disease aceruloplasminemia were investigated by testing their ability to prevent ferroportin degradation in rat glioma C6 cells silenced for endogenous ceruloplasmin. Most of the mutants did not complement (i.e. did not stabilize ferroportin) because of the irreversible loss of copper binding ability. Mutant R701W, which was found in a heterozygous very young patient with severe neurological problems, was unable to complement per se but did so in the presence of copper-glutathione or when the yeast copper ATPase Ccc2p was co-expressed, indicating that the protein was structurally able to bind copper but that metal loading involving the mammalian copper ATPase ATP7B was impaired. Notably, R701W exerted a dominant negative effect on wild type, and it induced the subcellular relocalization of ATP7B. Our results constitute the first evidence of "functional silencing" of ATP7B as a novel molecular defect in aceruloplasminemia. The possibility to reverse the deleterious effects of some aceruloplasminemia mutations may disclose new possible therapeutic strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.