Abstract

To explore the relationship between the dominant direction of micro-cracks and the anisotropy, this research focuses on the micro-crack initiation and propagation mechanism and the anisotropic parameters evolution in the rock under uniaxial compression. Based on the maximum circumferential stress theory and the assumption of shear slip leading to the local tensile stress, the micro-crack initiation and propagation model is established, and the anisotropic parameters of rock is further explored. To verify the theory, the marble limestone, granite porphyry and granite are selected to conduct uniaxial compression experiment. It is indicated that the experimental results of elastic moduli and Poisson’s ratio are well consistent with theoretical analysis. Finally, the relationship between the dominant direction of original and secondary micro-cracks and the effect of the micro-cracks’ dominant direction on practical engineering are discussed. The results show that the dominant direction of micro-cracks is parallel to the maximum principal stress under uniaxial compression, which leads to the anisotropy of rock. With the increase of stress, the axial and transverse elastic moduli would decrease, while the extent of the decrease of axial elastic modulus is larger. The axial Poisson’s ratio would increase and the transverse Poisson’s ratio will decrease. Moreover, the Poisson’s ratio is more sensitive to the anisotropy caused by the dominant direction of micro-cracks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call